


The Developer

Security and data privacy requirement introduce
access control and encryption requirements for
developers. A few common challenges developers
face to meet these requirements while focusing on
building their business logic are:

Enabling encryption across all microservice
components requires changes to applications and
maintaining the associated public key infrastructure
(PKI). Any patches associated with encryption
libraries means re-deploying these applications.

Authorization for APIs needs to be implemented in a
distributed manner to ensure all API requests within
the Enterprise and access to APIs outside of the

Enterprise are sanctioned.

Secrets management and key distribution for
distributed applications - especially ones governed
by strict compliance requirements such as PCIl -
introduce overhead for the developer.

Two personas play a critical role in successfully enabling microservices:

The Security Practitioner

For the security practitioner maintaining
visibility, compliance, and control while
embracing this architectural transformation
towards microservices is the primary goal. A
few common challenges security teams face to
achieving this goal are:

Dynamic nature of microservices invalidates
existing network security approaches. The
commonly-used ticket-driven security practices
requiring corporate security teams to create
new firewall rules with each release greatly
hampers application deployment velocity.

Losing control over the network and compute
infrastructure creates challenges for monitoring
the threat landscape at the network and host
layer.

Assessing compliance for containers and new
application architectures driven by APlIs.

Core Tenants of a Microservice Security Solution

The adoption of microservices and cloud-native infrastructure requires a comprehensive solution that operates across multiple
layers of the security stack and is built on strong identity for policy enforcement. Three core tenants define an effective

microservice security solution:

Does the solution address Is the solution based on the Zero Can it be deployed

the entire microservices Trust principles of authentication and across heterogeneous

stack? authorization for all transactions? environments?




Comprehensive

There are three layers in the microservice security stack:

|. Container runtime: interactions of the container with the host
Il. Network access: network traffic between microservices

lll. Application programming interface (API) layers: The unit of consumption for microservices
Focusing on any one layer results in myopic protection and detection solutions for two key reasons:

I. Detection: The ability to correlate data for anomalies across these three layers greatly improves the signal to noise ratio for
detecting attacks. Signals from all three layers give us a better view into the potential kill chain an attacker will execute. For
example we are able to correlate a runtime violation with running port scans or brute force attempts to determine open api's on

a microservice.

Il. Protection: Exercising zero trust and least privilege access control across these 3 layers creates a much more robust solution.
A code injection attack followed by remote shell and data exfiltration attempt encompasses multiple layers of the security stack.
Enabling access control at each layer greatly reduces the probability of a complete attack execution.

Identity Driven

Service Identity or Application Identity is central to Authentication and enforcing Authorization between users, applications and
microservice APls. The more context available to identify a microservice, the stronger it makes authentication and authorization
policies. Considerations for enhancing the identity of a service are as follows:

I. Leveraging vulnerability data from container image scans. This data may change over the life of a container and so does the
contextual identity of the container.

Il. Containers are most often auto-generated as part of a CI/CD pipeline and carry considerable metadata, such as the type of
container (frontend or backend), the type of image it is running (Mongo, Redis) and perhaps some reference identifier back to the
code commit that triggered the creation of this container. This metadata can become a multi-attribute identity.

Identity paves the path for scalable encryption across all microservices. Mutual TLS is a popular encryption technique and part
of the TLS negotiation process is to authenticate and authorize both ends of a microservice. The identity assigned to a
microservice can now become an integral part of authorizing this TLS session. It is important to offload any Public Key
Infrastructure logic from the microservice allowing developers to focus on their business logic.

Heterogeneous

Most microservice and cloud-native adoption projects start as small initiatives with specific scopes. There is always a brownfield
deployment where microservices have dependencies on monoliths. The services can be hosted in both public and private cloud
environments and use a number orchestration capabilities such as Kubernetes, EC2 Container Services or VMWare. A microservice
security solution needs to operate in all of these environments.







Monitoring container runtime events can provide valuable signals indicating vulnerabilities. Generating alerts for specific runtime
events provides visibility and remediation into potential threats on the host such as privilege escalation, code injection and data
exfiltration.

Monitoring the right runtime events can be done through explicit rules, but this approach is static and inflexible. An alternative
approach is through the use of runtime behavior analysis of a given container and detecting any anomalies from baseline behavior.
Machine learning techniques can reduce false positives in detection of anomalies but it is also very important to understand machine

learning algorithms need large data sets for proper training.

Consider a scenario in which a vulnerability is discovered and it impacts containers you have deployed. Continuous vulnerability
detection provides immediate visibility into impacted containers and allows your security teams to assess the impact of the
vulnerability to the application and enact a remediation plan. Additional monitoring rules and runtime policies can be applied to
impacted containers to ensure any potential exploits are flagged and quarantined while patch plans are being put in place. These
best practices for threat and vulnerability management give newfound visibility into cloud security threats and the opportunity to
apply security automation and orchestration to cloud incident response workflows.

APl Access Control

Microservices are exposed through application programming interfaces (API). APIs open a new threat vector. Without the right
access controls in place, APIs can be easily exploited for data exfiltration. Access to an APl must be controlled through an
authentication process - this is part of setting up a TLS session as most API requests utilize HTTPs - and authorization policy. When
authorizing APl requests, it is common to use a token - most commonly a JSON Web Token (JWT) - that carries information about the
service or user making the API request. The JWT is provided to a user or microservice by an identity provider and it contains
information on what the user or microservice is allowed to do. Authorization for APIs is most often defined as custom business logic
in applications today, but this approach does not work well because changes in authorization policies forces changes in applications.

A better and more scalable approach is to use a centralized mechanism to define APl authorization policies with distributed
enforcement outside of application business logic. A change in authorization policy should not require a change in application logic.

In enterprises, security teams want to control policies tied to APl access and need auditing and visibility capabilities for compliance.
There are two critical steps to ensuring that developers and security are aligned:

I. Developers define microservice APls, the dependencies these APIs have on internal or external applications, and scopes (create,
update, read, delete) associated to each of the APIs.

Il. The security teams define runtime policies associated to these APIs that control which entities - a user or another microservice -
are authorized to access specific APIs. All AP| access attempts need to be logged for auditability and compliance.

Conclusion

Organizations of all sizes and levels of security maturity are rapidly adopting microservices. These implementations are driving the
need for security teams to fully understand the full set of security requirements in order to not be misled into thinking that legacy
security solutions will protect them. Comprehensive microservices security requires a combination of maintaining proper hygiene,
monitoring, logging, and compliance. Most importantly in a microservices environment is following the principles of Zero Trust least
privilege access control. It is important to take these principles into consideration at all layers of the security stack.






